Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Development ; 143(16): 3024-34, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27471258

RESUMO

During Notch (N)-mediated binary cell fate decisions, cells adopt two different fates according to the levels of N pathway activation: an Noff-dependent or an Non-dependent fate. How cells maintain these N activity levels over time remains largely unknown. We address this question in the cell lineage that gives rise to the Drosophila mechanosensory organs. In this lineage a primary precursor cell undergoes a stereotyped sequence of oriented asymmetric cell divisions and transits through two neural precursor states before acquiring a neuron identity. Using a combination of genetic and cell biology strategies, we show that Escargot and Scratch, two transcription factors belonging to the Snail superfamily, maintain Noff neural commitment by directly blocking the transcription of N target genes. We propose that Snail factors act by displacing proneural transcription activators from DNA binding sites. As such, Snail factors maintain the Noff state in neural precursor cells by buffering any ectopic variation in the level of N activity. Since Escargot and Scratch orthologs are present in other precursor cells, our findings are fundamental for understanding precursor cell fate acquisition in other systems.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/citologia , Receptores Notch/metabolismo , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Drosophila/metabolismo , Proteínas de Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Receptores Notch/genética , Fatores de Transcrição da Família Snail/genética , Fatores de Transcrição da Família Snail/metabolismo , Fatores de Transcrição/genética
2.
Development ; 143(7): 1160-9, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26893341

RESUMO

Developmentally regulated cell cycle arrest is a fundamental feature of neurogenesis, whose significance is poorly understood. During Drosophila sensory organ (SO) development, primary progenitor (pI) cells arrest in G2 phase for precisely defined periods. Upon re-entering the cell cycle in response to developmental signals, these G2-arrested precursor cells divide and generate specialized neuronal and non-neuronal cells. To study how G2 phase arrest affects SO lineage specification, we forced pI cells to divide prematurely. This produced SOs with normal neuronal lineages but supernumerary non-neuronal cell types because prematurely dividing pI cells generate a secondary pI cell that produces a complete SO and an external precursor cell that undergoes amplification divisions. pI cells are therefore able to undergo self-renewal before transit to a terminal mode of division. Regulation of G2 phase arrest thus serves a dual role in SO development: preventing progenitor self-renewal and synchronizing cell division with developmental signals. Cell cycle arrest in G2 phase temporally coordinates the precursor cell proliferation potential with terminal cell fate determination to ensure formation of organs with a normal set of sensory cells.


Assuntos
Autorrenovação Celular/fisiologia , Drosophila/embriologia , Pontos de Checagem da Fase G2 do Ciclo Celular/fisiologia , Neurogênese/fisiologia , Células-Tronco/citologia , Animais , Proteína Quinase CDC2/metabolismo , Diferenciação Celular/fisiologia , Linhagem da Célula/fisiologia , Proteínas de Drosophila
3.
Development ; 139(18): 3432-41, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22874916

RESUMO

Morphogenesis of epithelial tissues relies on the interplay between cell division, differentiation and regulated changes in cell shape, intercalation and sorting. These processes are often studied individually in relatively simple epithelia that lack the complexity found during organogenesis when these processes might all coexist simultaneously. To address this issue, we are making use of the developing fly retinal neuroepithelium. Retinal morphogenesis relies on a coordinated sequence of interdependent morphogenetic events that includes apical cell constriction, localized alignment of groups of cells and ommatidia morphogenesis coupled to neurogenesis. Here, we use live imaging to document the sequence of adherens junction (AJ) remodelling events required to generate the fly ommatidium. In this context, we demonstrate that the kinases Rok and Drak function redundantly during Myosin II-dependent cell constriction, subsequent multicellular alignment and AJ remodelling. In addition, we show that early multicellular patterning characterized by cell alignment is promoted by the conserved transcription factor Atonal (Ato). Further ommatidium patterning requires the epidermal growth factor receptor (EGFR) signalling pathway, which transcriptionally governs rok- and Drak-dependent AJ remodelling while also promoting neurogenesis. In conclusion, our work reveals an important role for Drak in regulating AJ remodelling during retinal morphogenesis. It also sheds new light on the interplay between Ato, EGFR-dependent transcription and AJ remodelling in a system in which neurogenesis is coupled with cell shape changes and regulated steps of cell intercalation.


Assuntos
Junções Aderentes/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Drosophila/metabolismo , Receptores ErbB/metabolismo , Morfogênese/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Quinases Associadas a rho/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Drosophila , Proteínas de Drosophila/genética , Receptores ErbB/genética , Morfogênese/genética , Proteínas do Tecido Nervoso/genética , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Quinases Associadas a rho/genética
4.
Proc Natl Acad Sci U S A ; 109(20): 7893-8, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22547825

RESUMO

Neurons present a wide variety of morphologies that are associated with their specialized functions. However, to date very few pathways and factors regulating neuronal maturation, including morphogenesis, have been identified. To address this issue we make use here of the genetically amenable developing fly photoreceptor (PR). Whereas this sensory neuron is specified early during retinal development, its maturation spans several days. During this time, this neuron acquires specialized membrane domains while undergoing extensive polarity remodeling. In this study, we identify a pathway in which the conserved homeobox protein Orthodenticle (Otd) acts together with the ecdysone receptor (EcR) to directly repress the expression of the transcription factor (TF) Kruppel homolog 1 (Kr-h1). We demonstrate that this pathway is not required to promote neuronal specification but is crucial to regulate PR maturation. PR maturation includes the remodeling of the cell's epithelial features and associated apical membrane morphogenesis. Furthermore, we show that hormonal control coordinates PR differentiation and morphogenesis with overall development. This study demonstrates that during PR differentiation, transient repression of Kr-h1 represents a key step regulating neuronal maturation. Down-regulation of Kr-h1 expression has been previously associated with instances of neuronal remodeling in the fly brain. We therefore conclude that repression of this transcription factor represents a key step, enabling remodeling and maturation in a wide variety of neurons.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Células Fotorreceptoras de Invertebrados/fisiologia , Retina/ultraestrutura , Animais , Imunoprecipitação da Cromatina , Clonagem Molecular , Primers do DNA/genética , Imuno-Histoquímica , Larva/crescimento & desenvolvimento , Larva/metabolismo , Análise em Microsséries , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Receptores de Esteroides/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
Development ; 137(5): 815-24, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20147382

RESUMO

Most cell types in an organism show some degree of polarization, which relies on a surprisingly limited number of proteins. The underlying molecular mechanisms depend, however, on the cellular context. Mutual inhibitions between members of the Par genes are proposed to be sufficient to polarize the C. elegans one-cell zygote and the Drosophila oocyte during mid-oogenesis. By contrast, the Par genes interact with cellular junctions and associated complexes to polarize epithelial cells. The Par genes are also required at an early step of Drosophila oogenesis for the maintenance of the oocyte fate and its early polarization. Here we show that the Par genes are not sufficient to polarize the oocyte early and that the activity of the tumor-suppressor gene lethal giant larvae (lgl) is required for the posterior translocation of oocyte-specific proteins, including germline determinants. We also found that Lgl localizes asymmetrically within the oocyte and is excluded from the posterior pole. We further demonstrate that phosphorylation of Par-1, Par-3 (Bazooka) and Lgl is crucial to regulate their activity and localization in vivo and describe, for the first time, adherens junctions located around the ring canals, which link the oocyte to the other cells of the germline cyst. However, null mutations in the DE-cadherin gene, which encodes the main component of the zonula adherens, do not affect the early polarization of the oocyte. We conclude that, despite sharing many similarities with other model systems at the genetic and cellular levels, the polarization of the early oocyte relies on a specific subset of polarity proteins.


Assuntos
Polaridade Celular/genética , Proteínas de Drosophila/fisiologia , Drosophila/genética , Drosophila/fisiologia , Oócitos/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Animais , Animais Geneticamente Modificados , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Feminino , Quinase 3 da Glicogênio Sintase , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Modelos Biológicos , Oócitos/metabolismo , Oogênese/genética , Oogênese/fisiologia , Ovário/citologia , Ovário/metabolismo , Ovário/fisiologia , Fosforilação/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Tempo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
7.
PLoS Genet ; 5(8): e1000594, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19662164

RESUMO

Understanding the mechanisms that coordinate cell proliferation, cell cycle arrest, and cell differentiation is essential to address the problem of how "normal" versus pathological developmental processes take place. In the bristle lineage of the adult fly, we have tested the capacity of post-mitotic cells to re-enter the cell cycle in response to the overexpression of cyclin E. We show that only terminal cells in which the identity is independent of Notch pathway undergo extra divisions after CycE overexpression. Our analysis shows that the responsiveness of cells to forced proliferation depends on both Prospero, a fate determinant, and on the level of Notch pathway activity. Our results demonstrate that the terminal quiescent state and differentiation are regulated by two parallel mechanisms acting simultaneously on fate acquisition and cell cycle progression.


Assuntos
Linhagem da Célula , Proliferação de Células , Ciclina E/metabolismo , Regulação para Baixo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Receptores Notch/metabolismo , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular , Ciclina E/genética , Drosophila/citologia , Drosophila/genética , Proteínas de Drosophila/genética , Expressão Gênica , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Receptores Notch/genética , Fatores de Transcrição/genética
8.
Nat Cell Biol ; 11(6): 685-93, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19430468

RESUMO

Stem cells generate self-renewing and differentiating progeny over many rounds of asymmetric divisions. How stem cell growth rate and size are maintained over time remains unknown. We isolated mutations in a Drosophila melanogaster gene, wicked (wcd), which induce premature differentiation of germline stem cells (GSCs). Wcd is a member of the U3 snoRNP complex required for pre-ribosomal RNA maturation. This general function of Wcd contrasts with its specific requirement for GSC self-renewal. However, live imaging of GSCs within their niche revealed a pool of Wcd-forming particles that segregate asymmetrically into the GSCs on mitosis, independently of the Dpp signal sent by the niche. A fraction of Wcd also segregated asymmetrically in dividing larval neural stem cells (NSCs). In the absence of Wcd, NSCs became smaller and produced fewer neurons. Our results show that regulation of ribosome synthesis is a crucial parameter for stem cell maintenance and function.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/embriologia , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Células-Tronco , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Neurônios/citologia , Neurônios/fisiologia , Oócitos/citologia , Oócitos/fisiologia , Interferência de RNA , Precursores de RNA/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/genética , Transdução de Sinais/fisiologia , Células-Tronco/citologia , Células-Tronco/fisiologia
9.
Dev Cell ; 13(5): 730-742, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17981140

RESUMO

Cell constriction promotes epithelial sheet invagination during embryogenesis across phyla. However, how this cell response is linked to global patterning information during organogenesis remains unclear. To address this issue, we have used the Drosophila eye and studied the formation of the morphogenetic furrow (MF), which is characterized by cells undergoing a synchronous apical constriction and apicobasal contraction. We show that this cell response relies on microtubules and F-actin enrichment within the apical domain of the constricting cell as well as on the activation of nonmuscle myosin. In the MF, Hedgehog (Hh) signaling is required to promote cell constriction downstream of cubitus interruptus (ci), and, in this context, Ci155 functions redundantly with mad, the main effector of dpp/BMP signaling. Furthermore, ectopically activating Hh signaling in fly epithelia reveals a direct relationship between the duration of exposure to this signaling pathway, the accumulation of activated Myosin II, and the degree of tissue invagination.


Assuntos
Olho Composto de Artrópodes/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila/fisiologia , Proteínas Hedgehog/fisiologia , Miosina Tipo II/fisiologia , Animais , Padronização Corporal , Movimento Celular , Olho Composto de Artrópodes/crescimento & desenvolvimento , Olho Composto de Artrópodes/metabolismo , Proteínas de Ligação a DNA/metabolismo , Drosophila/citologia , Drosophila/crescimento & desenvolvimento , Proteínas de Drosophila/metabolismo , Epitélio/crescimento & desenvolvimento , Epitélio/fisiologia , Morfogênese , Transdução de Sinais , Fatores de Transcrição/metabolismo
10.
Prog Mol Subcell Biol ; 45: 97-120, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17585498

RESUMO

In most vertebrates and invertebrates, germ cells produce female and male gametes after one or several rounds of asymmetric cell division. Germline-specific features are used for the asymmetric segregation of fates, chromosomes and size during gametogenesis. In Drosophila females, for example, a germline-specific organelle called the fusome is used repeatedly to polarize the divisions of germline stem cells for their self-renewal, and during the divisions of cyst cells for the specification of the oocyte among a group of sister cells sharing a common cytoplasm. Later during oogenesis of most species, meiotic divisions produce a striking size asymmetry between a large oocyte and small polar bodies. The strategy used to create this asymmetry may involve the microtubules or the actin microfilaments or both, depending on the considered species. Despite this diversity and species-particularities, recent molecular data suggest that the PAR proteins, which control asymmetric cell division in a wide range of organisms and somatic cell types, could also play an important role at different steps of gametogenesis in many species. Here, we review the asymmetric features of germline cell division, from mitosis of germline stem cells to the extrusion of polar bodies after meiotic divisions.


Assuntos
Divisão Celular/fisiologia , Células Germinativas , Oócitos , Animais , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/embriologia , Células Germinativas/citologia , Células Germinativas/fisiologia , Meiose/fisiologia , Microtúbulos/metabolismo , Oócitos/citologia , Oócitos/fisiologia , Oogênese/fisiologia , Organelas/metabolismo
11.
Trends Genet ; 21(7): 413-20, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15927300

RESUMO

"Normal" development requires a finely tuned equilibrium between cell differentiation and cell proliferation. Important issues in development include whether the cell cycle controls the cell-fate determination and whether cell identity in turn regulates cell-cycle progression. Although, these issues are of general biological relevance, stereotyped Drosophila neural lineages are particularly suited to address these questions and have provided insights into the links between cell-cycle progression and cell-fate specification.


Assuntos
Drosophila/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Sistema Nervoso/embriologia , Neurônios/metabolismo , Animais , Ciclo Celular , Linhagem da Célula , Proliferação de Células , Citocinese , Modelos Biológicos , Fase S
12.
Dev Biol ; 276(2): 367-77, 2004 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-15581871

RESUMO

The Drosophila bristle lineage is an excellent system in which to study how cell cycle and fate determination are synchronized in invariant cell lineages. In this model, five different cells arise from a single precursor cell, pI, after four asymmetric cell divisions. Cell diversity is achieved by the asymmetric segregation of cell determinants, such as Numb and Neuralized (Neur), resulting in differential activation of the Notch (N) pathway. We show that down-regulation of Cdc2, by over-expressing Tribbles, Dwee1, and Dmyt1 (three negative regulators of Cdc2) or by using thermo-sensitive Cdc2 mutant flies, delayed pI mitosis, and altered the polarity and the number of subsequent cell divisions. These modifications were associated with a mother-daughter cell fate transformation as the pI cell acquired the identity of the secondary precursor cell, pIIb. This type of change in cell identity only occurred when the N signaling pathway was inactive since ectopic N signaling transformed pI to pIIa-progeny fate. These transformations in cell identity suggest that, although synchronized, cell cycle and fate determination are independent phenomena in the bristle lineage.


Assuntos
Proteína Quinase CDC2/metabolismo , Regulação para Baixo , Drosophila melanogaster/fisiologia , Células-Tronco/fisiologia , Animais , Proteína Quinase CDC2/antagonistas & inibidores , Proteína Quinase CDC2/genética , Ciclo Celular/fisiologia , Linhagem da Célula , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Neurônios/citologia , Neurônios/fisiologia , Fenótipo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Células-Tronco/citologia , Transgenes
13.
Development ; 130(1): 123-33, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12441297

RESUMO

Apoptosis plays a major role in vertebrate and invertebrate development. The adult Drosophila thoracic microchaete is a mechanosensory organ whose development has been extensively studied as a model of how cell division and cell determination intermingle. This sensory organ arises from a cell lineage that produces a glial cell and four other cells that form the organ. In this study, using an in vivo approach as well as fixed material, we show that the glial cell undergoes nucleus fragmentation shortly after birth. Fragmentation was blocked after overexpression of the caspase inhibitor p35 or removal of the pro-apoptotic genes reaper, hid and grim, showing that the glial cell undergoes apoptosis. Moreover, it seems that fragments are eliminated from the epithelium by mobile macrophages. Forcing survival of the glial cells induces precocious axonal outgrowth but does not affect final axonal patterning and connectivity. However, under these conditions, glial cells do not fragment but leave the epithelium by a mechanism that is reminiscent of cell competition. Finally, we present evidences showing that glial cells are committed to apoptosis independently of gcm and prospero expression. We suggest that apoptosis is triggered by a cell autonomous mechanism.


Assuntos
Apoptose/fisiologia , Drosophila/crescimento & desenvolvimento , Neuroglia/citologia , Órgãos dos Sentidos/citologia , Órgãos dos Sentidos/crescimento & desenvolvimento , Fatores de Transcrição , Animais , Animais Geneticamente Modificados , Animais Recém-Nascidos , Axônios/fisiologia , Linhagem da Célula , Sobrevivência Celular , Inibidores de Cisteína Proteinase/genética , Proteínas de Ligação a DNA , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Células Epiteliais , Epitélio/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Inibidoras de Apoptose , Microscopia Confocal/métodos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fagocitose/fisiologia , Pupa , Transativadores/genética , Transativadores/metabolismo , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...